A Rule-of-Thumb for the Variable Bandwidth Selection in Kernel Hazard Rate Estimation
نویسندگان
چکیده
In nonparametric curve estimation the decision about the type of smoothing parameter is critical for the practical performance. The nearest neighbor bandwidth as introduced by Gefeller and Dette 1992 for censored data in survival analysis is specified by one parameter, namely the number of nearest neighbors. Bandwidth selection in this setting is rarely investigated although not linked closely to the frequently studied fixed bandwidth. We introduce a selection algorithm in the hazard rate estimation context. The approach uses a newly developed link to the fixed bandwidth which identifies the variable bandwidth as additional smoothing step. The procedure gains further data-adaption after fixed bandwidth smoothing. Assessment by a Monte Carlo simulation and a clinical example demonstrate the practical relevance of the findings.
منابع مشابه
The Gram-Charlier A Series based Extended Rule-of-Thumb for Bandwidth Selection in Univariate and Multivariate Kernel Density Estimations
The article derives a novel Gram-Charlier A (GCA) Series based Extended Rule-of-Thumb (ExROT) for bandwidth selection in Kernel Density Estimation (KDE). There are existing various bandwidth selection rules achieving minimization of the Asymptotic Mean Integrated Square Error (AMISE) between the estimated probability density function (PDF) and the actual PDF. The rules differ in a way to estima...
متن کاملDensity Estimation of Censored Data with Infinite-Order Kernels
Higher-order accurate density estimation under random right censorship is achieved using kernel estimators from a family of infinite-order kernels. A compatible bandwidth selection procedure is also proposed that automatically adapts to level of smoothness of the underlying lifetime density. The combination of infinite-order kernels with the new bandwidth selection procedure produces a consider...
متن کاملHow bandwidth selection algorithms impact exploratory data analysis using kernel density estimation.
Exploratory data analysis (EDA) can reveal important features of underlying distributions, and these features often have an impact on inferences and conclusions drawn from data. Graphical analysis is central to EDA, and graphical representations of distributions often benefit from smoothing. A viable method of estimating and graphing the underlying density in EDA is kernel density estimation (K...
متن کاملA Bayesian Approach to Bandwidth Selection for Multivariate Kernel Regression with an Application to State- Price Density Estimation
Multivariate kernel regression is an important tool for investigating the relationship between a response and a set of explanatory variables. It is generally accepted that the performance of a kernel regression estimator largely depends on the choice of bandwidth rather than the kernel function. This nonparametric technique has been employed in a number of empirical studies including the state-...
متن کاملA non-asymptotic bandwidth selection method for kernel density estimation of discrete data
In this paper we explore a method for modeling of categorical data derived from the principles of the Generalized Cross Entropy method. The method builds on standard kernel density estimation techniques by providing a novel non-asymptotic data-driven bandwidth selection rule. In addition to this, the Entropic approach provides model sparsity not present in the standard kernel approach. Numerica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004